Skip to content

Chassisml Python SDK

Introduction

The Chassisml Python SDK offers convenience functions that interact with the Chassisml service to automate the containerization and deployment of models to your preferred model serving platform. It is organized into two classes:

  • ChassisClient: interacts with the Chassis routes that build a user's container from their model artifacts
  • ChasissModel: creates a chassis compliant model out of a few lines of Python code from user supplied model artifacts

First, install the Chassisml SDK to get started:

pip install chassisml

To import the library into your editor:

import chassisml

Usage

ChassisClient

The Chassis Client object.

This class is used to interact with the Kaniko service.

Attributes:

Name Type Description
base_url str

The base url for the API.

auth_header str

Optional authorization header to be included with all requests.

ssl_verification Union[str, bool]

Can be path to certificate to use during requests to service, True (use verification), or False (don't use verification).

Source code in chassisml_sdk/chassisml/chassisml.py
class ChassisClient:
    """The Chassis Client object.

    This class is used to interact with the Kaniko service.

    Attributes:
        base_url (str): The base url for the API.
        auth_header (str): Optional authorization header to be included with all requests.
        ssl_verification (Union[str, bool]): Can be path to certificate to use during requests to service, True (use verification), or False (don't use verification).
    """

    def __init__(self,base_url='http://localhost:5000',auth_header=None,ssl_verification=True):
        self.base_url = base_url
        self.auth_header = auth_header
        self.ssl_verification = ssl_verification

        if self.auth_header:
            res = requests.get(base_url,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
        else:
            res = requests.get(base_url,verify=self.ssl_verification)

        version_route = base_url + "/version"
        if self.auth_header:
            res = requests.get(version_route,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
        else:
            res = requests.get(version_route,verify=self.ssl_verification)

        parsed_version = version.parse(res.text)
        if parsed_version < version.Version('1.0.0'):
            warnings.warn("Chassis service version should be >=1.0.0 for compatibility with this SDK version, things may not work as expected. Please update the service.")

    def get_job_status(self, job_id):
        '''
        Checks the status of a chassis job

        Args:
            job_id (str): Chassis job identifier generated from `ChassisModel.publish` method

        Returns:
            Dict: JSON Chassis job status

        Examples:
        ```python
        # Create Chassisml model
        chassis_model = chassis_client.create_model(process_fn=process)

        # Define Dockerhub credentials
        dockerhub_user = "user"
        dockerhub_pass = "password"

        # Publish model to Docker registry
        response = chassis_model.publish(
            model_name="Chassisml Regression Model",
            model_version="0.0.1",
            registry_user=dockerhub_user,
            registry_pass=dockerhub_pass,
        ) 

        job_id = response.get('job_id')
        job_status = chassis_client.get_job_status(job_id)
        ```

        '''
        route = f'{urllib.parse.urljoin(self.base_url, routes["job"])}/{job_id}'
        if self.auth_header:
            res = requests.get(route,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
        else:
            res = requests.get(route,verify=self.ssl_verification)

        data = res.json()
        return data

    def get_job_logs(self, job_id):
        '''
        Checks the status of a chassis job
        Args:
            job_id (str): Chassis job identifier generated from `ChassisModel.publish` method

        Returns:
            Dict: JSON Chassis job status
        Examples:
        ```python
        # Create Chassisml model
        chassis_model = chassis_client.create_model(process_fn=process)
        # Define Dockerhub credentials
        dockerhub_user = "user"
        dockerhub_pass = "password"
        # Publish model to Docker registry
        response = chassis_model.publish(
            model_name="Chassisml Regression Model",
            model_version="0.0.1",
            registry_user=dockerhub_user,
            registry_pass=dockerhub_pass,
        ) 
        job_id = response.get('job_id')
        job_status = chassis_client.get_job_logs(job_id)
        ```
        '''
        route = f'{urllib.parse.urljoin(self.base_url, routes["job"])}/{job_id}/logs'
        if self.auth_header:
            res = requests.get(route,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
        else:
            res = requests.get(route,verify=self.ssl_verification)
        res.raise_for_status()
        return res.text

    def block_until_complete(self,job_id,timeout=None,poll_interval=5):
        '''
        Blocks until Chassis job is complete or timeout is reached. Polls Chassis job API until a result is marked finished.

        Args:
            job_id (str): Chassis job identifier generated from `ChassisModel.publish` method
            timeout (int): Timeout threshold in seconds
            poll_intervall (int): Amount of time to wait in between API polls to check status of job

        Returns:
            Dict: final job status returned by `ChassisClient.block_until_complete` method

        Examples:
        ```python
        # Create Chassisml model
        chassis_model = chassis_client.create_model(process_fn=process)

        # Define Dockerhub credentials
        dockerhub_user = "user"
        dockerhub_pass = "password"

        # Publish model to Docker registry
        response = chassis_model.publish(
            model_name="Chassisml Regression Model",
            model_version="0.0.1",
            registry_user=dockerhub_user,
            registry_pass=dockerhub_pass,
        ) 

        job_id = response.get('job_id')
        final_status = chassis_client.block_until_complete(job_id)
        ```        

        '''
        endby = time.time() + timeout if (timeout is not None) else None
        while True:
            status = self.get_job_status(job_id)
            if status['status']['succeeded'] or status['status']['failed']:
                return status
            if (endby is not None) and (time.time() > endby - poll_interval):
                print('Timed out before completion.')
                return False
            time.sleep(poll_interval)

    def download_tar(self, job_id, output_filename):
        '''
        Downloads container image as tar archive

        **NOTE**: This method is not available in the publicly-hosted service.

        Args:
            job_id (str): Chassis job identifier generated from `ChassisModel.publish` method
            output_filename (str): Local output filepath to save container image

        Returns:
            None: This method does not return an object

        Examples:
        ```python
        # Publish model to Docker registry
        response = chassis_model.publish(
            model_name="Chassisml Regression Model",
            model_version="0.0.1",
            registry_user=dockerhub_user,
            registry_pass=dockerhub_pass,
        ) 

        job_id = response.get('job_id)
        chassis_client.download_tar(job_id, "./chassis-model.tar")
        ```
        '''
        url = f'{urllib.parse.urljoin(self.base_url, routes["job"])}/{job_id}/download-tar'

        if self.auth_header:
            r = requests.get(url,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
        else:
            r = requests.get(url,verify=self.ssl_verification)


        if r.status_code == 200:
            with open(output_filename, 'wb') as f:
                f.write(r.content)
        else:
            print(f'Error download tar: {r.text}')

    def create_model(self,process_fn=None,batch_process_fn=None,batch_size=None):
        '''
        Builds chassis model locally

        Args:
            process_fn (function): Python function that must accept a single piece of input data in raw bytes form. This method is responsible for handling all data preprocessing, executing inference, and returning the processed predictions. Defining additional functions is acceptable as long as they are called within the `process` method
            batch_process_fn (function): Python function that must accept a batch of input data in raw bytes form. This method is responsible for handling all data preprocessing, executing inference, and returning the processed predictions. Defining additional functions is acceptable as long as they are called within the `process` method
            batch_size (int): Maximum batch size if `batch_process_fn` is defined

        Returns:
            ChassisModel: Chassis Model object that can be tested locally and published to a Docker Registry

        Examples:
        The following snippet was taken from this [example](https://docs.modzy.com/docs/chassis-ml).
        ```python
        # Import and normalize data
        X_digits, y_digits = datasets.load_digits(return_X_y=True)
        X_digits = X_digits / X_digits.max()

        n_samples = len(X_digits)

        # Split data into training and test sets
        X_train = X_digits[: int(0.9 * n_samples)]
        y_train = y_digits[: int(0.9 * n_samples)]
        X_test = X_digits[int(0.9 * n_samples) :]
        y_test = y_digits[int(0.9 * n_samples) :]

        # Train Model
        logistic = LogisticRegression(max_iter=1000)
        print(
            "LogisticRegression mean accuracy score: %f"
            % logistic.fit(X_train, y_train).score(X_test, y_test)
        )

        # Save small sample input to use for testing later
        sample = X_test[:5].tolist()
        with open("digits_sample.json", 'w') as out:
            json.dump(sample, out)        

        # Define Process function
        def process(input_bytes):
            inputs = np.array(json.loads(input_bytes))
            inference_results = logistic.predict(inputs)
            structured_results = []
            for inference_result in inference_results:
                structured_output = {
                    "data": {
                        "result": {"classPredictions": [{"class": str(inference_result), "score": str(1)}]}
                    }
                }
                structured_results.append(structured_output)
            return structured_results      

        # create Chassis model
        chassis_model = chassis_client.create_model(process_fn=process)              
        ```

        '''
        if not (process_fn or batch_process_fn):
            raise ValueError("At least one of process_fn or batch_process_fn must be provided.")

        if (batch_process_fn and not batch_size) or (batch_size and not batch_process_fn):
            raise ValueError("Both batch_process_fn and batch_size must be provided for batch support.")

        return ChassisModel(process_fn,batch_process_fn,batch_size,self.base_url,self.auth_header,self.ssl_verification)

    def run_inference(self,input_data,container_url="localhost",host_port=45000):
        '''
        This is the method you use to submit data to a container chassis has built for inference. It assumes the container has been downloaded from dockerhub and is running somewhere you have access to.

        Args:
            input_data (json): dictionary of the form {"input": <binary respresentaion of your data>}
            container_url (str): URL where container is running
            host_port (int): host port that forwards to container's grpc server port

        Returns:
            return_value (str): Success -> results from model processing as specified in the process function.
                                Failure -> Error codes from processing errors. All errors should container the word "Error."

        Examples:
        ```python
        # assume that the container is running locally, and that it was started with this docker command
        #  docker run -it -p 5001:45000 <docker_uname>/<container_name>:<tag_id>

        from chassisml_sdk.chassisml import chassisml

        client = chassisml.ChassisClient("https://chassis.app.modzy.com/")

        input_data = {"input": b"[[0.0, 0.0, 0.0, 1.0, 12.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.0, 15.0, 2.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 6.0, 1.0, 2.0, 0.0, 0.0, 4.0, 16.0, 9.0, 1.0, 15.0, 9.0, 0.0, 0.0, 13.0, 15.0, 6.0, 10.0, 16.0, 6.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 16.0, 1.0, 0.0, 0.0, 1.0, 7.0, 4.0, 14.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 9.0, 0.0, 0.0], [0.0, 0.0, 8.0, 16.0, 3.0, 0.0, 1.0, 0.0, 0.0, 0.0, 16.0, 14.0, 5.0, 14.0, 12.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 3.0, 16.0, 14.0, 1.0, 0.0, 0.0, 0.0, 0.0, 12.0, 16.0, 16.0, 2.0, 0.0, 0.0, 0.0, 0.0, 16.0, 11.0, 16.0, 4.0, 0.0, 0.0, 0.0, 3.0, 16.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 10.0, 1.0, 0.0, 0.0], [0.0, 0.0, 5.0, 12.0, 8.0, 0.0, 1.0, 0.0, 0.0, 0.0, 11.0, 16.0, 5.0, 13.0, 6.0, 0.0, 0.0, 0.0, 2.0, 15.0, 16.0, 12.0, 1.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 15.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 11.0, 0.0, 0.0, 0.0, 0.0, 11.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 6.0, 12.0, 12.0, 3.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 15.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 16.0, 12.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 3.0, 4.0, 3.0, 0.0, 0.0, 7.0, 16.0, 5.0, 3.0, 15.0, 8.0, 0.0, 0.0, 13.0, 16.0, 13.0, 15.0, 16.0, 2.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0, 16.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 16.0, 4.0, 0.0, 0.0], [0.0, 0.0, 10.0, 14.0, 8.0, 1.0, 0.0, 0.0, 0.0, 2.0, 16.0, 14.0, 6.0, 1.0, 0.0, 0.0, 0.0, 0.0, 15.0, 15.0, 8.0, 15.0, 0.0, 0.0, 0.0, 0.0, 5.0, 16.0, 16.0, 10.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 15.0, 12.0, 0.0, 0.0, 0.0, 4.0, 16.0, 6.0, 4.0, 16.0, 6.0, 0.0, 0.0, 8.0, 16.0, 10.0, 8.0, 16.0, 8.0, 0.0, 0.0, 1.0, 8.0, 12.0, 14.0, 12.0, 1.0, 0.0]]"}
        input_list = [input_data for _ in range(30)]

        print("single input")
        print(client.run_inference(input_data, container_url="localhost", host_port=5001))
        print("multi inputs")
        results = client.run_inference(input_list, container_url="localhost", host_port=5001)
        for x in results:
            print(x)
        ```
        '''
        model_client.override_server_URL(container_url, host_port)
        return model_client.run(input_data)

    def docker_infer(self,image_id,input_data,container_url="localhost",host_port=5001,container_port=None,timeout=20,clean_up=True,pull_container=False):
        '''
        Runs inference on an OMI compliant container. This method checks to see if a container is running and if not starts it. The method then runs inference against the input_data with the model in the container, and optionally shuts down the container.

        Args:
            image_id (string): the name of an OMI container image usually of the form <docker_uname>/<container_name>:<tag_id>
            input_data (json): dictionary of the form {"input": <binary respresentaion of your data>}
            container_url (str): URL where container is running
            host_port (int): host port that forwards to container's grpc server port
            container_port (str): container port the grpc server listens to
            timeout (int): number of seconds to wait for gRPC server to spin up
            clean_up (bool): whether or not to stop and remove the container after inference
            pull_container (bool): if True pulls missing container from repo

        Returns:
            return_value (str):    Success -> model output as defined in the process function
                                    Failure -> Error message if any success criteria is missing.
        Example:
        ```python
        host_port = 5002
        client = chassisml.ChassisClient()


        input_data = {"input": b"[[0.0, 0.0, 0.0, 1.0, 12.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.0, 15.0, 2.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 6.0, 1.0, 2.0, 0.0, 0.0, 4.0, 16.0, 9.0, 1.0, 15.0, 9.0, 0.0, 0.0, 13.0, 15.0, 6.0, 10.0, 16.0, 6.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 16.0, 1.0, 0.0, 0.0, 1.0, 7.0, 4.0, 14.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 9.0, 0.0, 0.0], [0.0, 0.0, 8.0, 16.0, 3.0, 0.0, 1.0, 0.0, 0.0, 0.0, 16.0, 14.0, 5.0, 14.0, 12.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 3.0, 16.0, 14.0, 1.0, 0.0, 0.0, 0.0, 0.0, 12.0, 16.0, 16.0, 2.0, 0.0, 0.0, 0.0, 0.0, 16.0, 11.0, 16.0, 4.0, 0.0, 0.0, 0.0, 3.0, 16.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 10.0, 1.0, 0.0, 0.0], [0.0, 0.0, 5.0, 12.0, 8.0, 0.0, 1.0, 0.0, 0.0, 0.0, 11.0, 16.0, 5.0, 13.0, 6.0, 0.0, 0.0, 0.0, 2.0, 15.0, 16.0, 12.0, 1.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 15.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 11.0, 0.0, 0.0, 0.0, 0.0, 11.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 6.0, 12.0, 12.0, 3.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 15.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 16.0, 12.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 3.0, 4.0, 3.0, 0.0, 0.0, 7.0, 16.0, 5.0, 3.0, 15.0, 8.0, 0.0, 0.0, 13.0, 16.0, 13.0, 15.0, 16.0, 2.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0, 16.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 16.0, 4.0, 0.0, 0.0], [0.0, 0.0, 10.0, 14.0, 8.0, 1.0, 0.0, 0.0, 0.0, 2.0, 16.0, 14.0, 6.0, 1.0, 0.0, 0.0, 0.0, 0.0, 15.0, 15.0, 8.0, 15.0, 0.0, 0.0, 0.0, 0.0, 5.0, 16.0, 16.0, 10.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 15.0, 12.0, 0.0, 0.0, 0.0, 4.0, 16.0, 6.0, 4.0, 16.0, 6.0, 0.0, 0.0, 8.0, 16.0, 10.0, 8.0, 16.0, 8.0, 0.0, 0.0, 1.0, 8.0, 12.0, 14.0, 12.0, 1.0, 0.0]]"}
        input_list = [input_data for _ in range(30)]
        print("single input")
        print(client.docker_infer(image_id="claytondavisms/sklearn-digits-docker-test:0.0.7", input_data=input_data, container_url="localhost", host_port=host_port, clean_up=False, pull_container=True))

        print("multi inputs")
        results = client.run_inference(input_list, container_url="localhost", host_port=host_port)
        results = client.docker_infer(image_id="claytondavisms/sklearn-digits-docker-test:0.0.7", input_data=input_list, container_url="localhost", host_port=host_port)
        for x in results:
            print(x)
        ```
        '''
        try:
            container_id = docker_start(image_id, host_port=host_port, container_port=container_port, timeout=timeout, pull_container=pull_container)
            if "Error" in container_id:
                raise ValueError("container_id wrong")
            return_value = self.run_inference(input_data, container_url=container_url,  host_port=host_port)
            if clean_up:
                docker_clean_up(container_id)
        except Exception as e:
            return_value = {"results": ["Error " + str(e)]}

        return return_value

block_until_complete(self, job_id, timeout=None, poll_interval=5)

Blocks until Chassis job is complete or timeout is reached. Polls Chassis job API until a result is marked finished.

Parameters:

Name Type Description Default
job_id str

Chassis job identifier generated from ChassisModel.publish method

required
timeout int

Timeout threshold in seconds

None
poll_intervall int

Amount of time to wait in between API polls to check status of job

required

Returns:

Type Description
Dict

final job status returned by ChassisClient.block_until_complete method

Examples:

# Create Chassisml model
chassis_model = chassis_client.create_model(process_fn=process)

# Define Dockerhub credentials
dockerhub_user = "user"
dockerhub_pass = "password"

# Publish model to Docker registry
response = chassis_model.publish(
    model_name="Chassisml Regression Model",
    model_version="0.0.1",
    registry_user=dockerhub_user,
    registry_pass=dockerhub_pass,
) 

job_id = response.get('job_id')
final_status = chassis_client.block_until_complete(job_id)
Source code in chassisml_sdk/chassisml/chassisml.py
def block_until_complete(self,job_id,timeout=None,poll_interval=5):
    '''
    Blocks until Chassis job is complete or timeout is reached. Polls Chassis job API until a result is marked finished.

    Args:
        job_id (str): Chassis job identifier generated from `ChassisModel.publish` method
        timeout (int): Timeout threshold in seconds
        poll_intervall (int): Amount of time to wait in between API polls to check status of job

    Returns:
        Dict: final job status returned by `ChassisClient.block_until_complete` method

    Examples:
    ```python
    # Create Chassisml model
    chassis_model = chassis_client.create_model(process_fn=process)

    # Define Dockerhub credentials
    dockerhub_user = "user"
    dockerhub_pass = "password"

    # Publish model to Docker registry
    response = chassis_model.publish(
        model_name="Chassisml Regression Model",
        model_version="0.0.1",
        registry_user=dockerhub_user,
        registry_pass=dockerhub_pass,
    ) 

    job_id = response.get('job_id')
    final_status = chassis_client.block_until_complete(job_id)
    ```        

    '''
    endby = time.time() + timeout if (timeout is not None) else None
    while True:
        status = self.get_job_status(job_id)
        if status['status']['succeeded'] or status['status']['failed']:
            return status
        if (endby is not None) and (time.time() > endby - poll_interval):
            print('Timed out before completion.')
            return False
        time.sleep(poll_interval)

create_model(self, process_fn=None, batch_process_fn=None, batch_size=None)

Builds chassis model locally

Parameters:

Name Type Description Default
process_fn function

Python function that must accept a single piece of input data in raw bytes form. This method is responsible for handling all data preprocessing, executing inference, and returning the processed predictions. Defining additional functions is acceptable as long as they are called within the process method

None
batch_process_fn function

Python function that must accept a batch of input data in raw bytes form. This method is responsible for handling all data preprocessing, executing inference, and returning the processed predictions. Defining additional functions is acceptable as long as they are called within the process method

None
batch_size int

Maximum batch size if batch_process_fn is defined

None

Returns:

Type Description
ChassisModel

Chassis Model object that can be tested locally and published to a Docker Registry

Examples:

The following snippet was taken from this example.

# Import and normalize data
X_digits, y_digits = datasets.load_digits(return_X_y=True)
X_digits = X_digits / X_digits.max()

n_samples = len(X_digits)

# Split data into training and test sets
X_train = X_digits[: int(0.9 * n_samples)]
y_train = y_digits[: int(0.9 * n_samples)]
X_test = X_digits[int(0.9 * n_samples) :]
y_test = y_digits[int(0.9 * n_samples) :]

# Train Model
logistic = LogisticRegression(max_iter=1000)
print(
    "LogisticRegression mean accuracy score: %f"
    % logistic.fit(X_train, y_train).score(X_test, y_test)
)

# Save small sample input to use for testing later
sample = X_test[:5].tolist()
with open("digits_sample.json", 'w') as out:
    json.dump(sample, out)        

# Define Process function
def process(input_bytes):
    inputs = np.array(json.loads(input_bytes))
    inference_results = logistic.predict(inputs)
    structured_results = []
    for inference_result in inference_results:
        structured_output = {
            "data": {
                "result": {"classPredictions": [{"class": str(inference_result), "score": str(1)}]}
            }
        }
        structured_results.append(structured_output)
    return structured_results      

# create Chassis model
chassis_model = chassis_client.create_model(process_fn=process)              

Source code in chassisml_sdk/chassisml/chassisml.py
def create_model(self,process_fn=None,batch_process_fn=None,batch_size=None):
    '''
    Builds chassis model locally

    Args:
        process_fn (function): Python function that must accept a single piece of input data in raw bytes form. This method is responsible for handling all data preprocessing, executing inference, and returning the processed predictions. Defining additional functions is acceptable as long as they are called within the `process` method
        batch_process_fn (function): Python function that must accept a batch of input data in raw bytes form. This method is responsible for handling all data preprocessing, executing inference, and returning the processed predictions. Defining additional functions is acceptable as long as they are called within the `process` method
        batch_size (int): Maximum batch size if `batch_process_fn` is defined

    Returns:
        ChassisModel: Chassis Model object that can be tested locally and published to a Docker Registry

    Examples:
    The following snippet was taken from this [example](https://docs.modzy.com/docs/chassis-ml).
    ```python
    # Import and normalize data
    X_digits, y_digits = datasets.load_digits(return_X_y=True)
    X_digits = X_digits / X_digits.max()

    n_samples = len(X_digits)

    # Split data into training and test sets
    X_train = X_digits[: int(0.9 * n_samples)]
    y_train = y_digits[: int(0.9 * n_samples)]
    X_test = X_digits[int(0.9 * n_samples) :]
    y_test = y_digits[int(0.9 * n_samples) :]

    # Train Model
    logistic = LogisticRegression(max_iter=1000)
    print(
        "LogisticRegression mean accuracy score: %f"
        % logistic.fit(X_train, y_train).score(X_test, y_test)
    )

    # Save small sample input to use for testing later
    sample = X_test[:5].tolist()
    with open("digits_sample.json", 'w') as out:
        json.dump(sample, out)        

    # Define Process function
    def process(input_bytes):
        inputs = np.array(json.loads(input_bytes))
        inference_results = logistic.predict(inputs)
        structured_results = []
        for inference_result in inference_results:
            structured_output = {
                "data": {
                    "result": {"classPredictions": [{"class": str(inference_result), "score": str(1)}]}
                }
            }
            structured_results.append(structured_output)
        return structured_results      

    # create Chassis model
    chassis_model = chassis_client.create_model(process_fn=process)              
    ```

    '''
    if not (process_fn or batch_process_fn):
        raise ValueError("At least one of process_fn or batch_process_fn must be provided.")

    if (batch_process_fn and not batch_size) or (batch_size and not batch_process_fn):
        raise ValueError("Both batch_process_fn and batch_size must be provided for batch support.")

    return ChassisModel(process_fn,batch_process_fn,batch_size,self.base_url,self.auth_header,self.ssl_verification)

docker_infer(self, image_id, input_data, container_url='localhost', host_port=5001, container_port=None, timeout=20, clean_up=True, pull_container=False)

Runs inference on an OMI compliant container. This method checks to see if a container is running and if not starts it. The method then runs inference against the input_data with the model in the container, and optionally shuts down the container.

Parameters:

Name Type Description Default
image_id string

the name of an OMI container image usually of the form /:

required
input_data json

dictionary of the form {"input": }

required
container_url str

URL where container is running

'localhost'
host_port int

host port that forwards to container's grpc server port

5001
container_port str

container port the grpc server listens to

None
timeout int

number of seconds to wait for gRPC server to spin up

20
clean_up bool

whether or not to stop and remove the container after inference

True
pull_container bool

if True pulls missing container from repo

False

Returns:

Type Description
return_value (str)

Success -> model output as defined in the process function Failure -> Error message if any success criteria is missing.

Examples:

host_port = 5002
client = chassisml.ChassisClient()


input_data = {"input": b"[[0.0, 0.0, 0.0, 1.0, 12.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.0, 15.0, 2.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 6.0, 1.0, 2.0, 0.0, 0.0, 4.0, 16.0, 9.0, 1.0, 15.0, 9.0, 0.0, 0.0, 13.0, 15.0, 6.0, 10.0, 16.0, 6.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 16.0, 1.0, 0.0, 0.0, 1.0, 7.0, 4.0, 14.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 9.0, 0.0, 0.0], [0.0, 0.0, 8.0, 16.0, 3.0, 0.0, 1.0, 0.0, 0.0, 0.0, 16.0, 14.0, 5.0, 14.0, 12.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 3.0, 16.0, 14.0, 1.0, 0.0, 0.0, 0.0, 0.0, 12.0, 16.0, 16.0, 2.0, 0.0, 0.0, 0.0, 0.0, 16.0, 11.0, 16.0, 4.0, 0.0, 0.0, 0.0, 3.0, 16.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 10.0, 1.0, 0.0, 0.0], [0.0, 0.0, 5.0, 12.0, 8.0, 0.0, 1.0, 0.0, 0.0, 0.0, 11.0, 16.0, 5.0, 13.0, 6.0, 0.0, 0.0, 0.0, 2.0, 15.0, 16.0, 12.0, 1.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 15.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 11.0, 0.0, 0.0, 0.0, 0.0, 11.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 6.0, 12.0, 12.0, 3.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 15.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 16.0, 12.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 3.0, 4.0, 3.0, 0.0, 0.0, 7.0, 16.0, 5.0, 3.0, 15.0, 8.0, 0.0, 0.0, 13.0, 16.0, 13.0, 15.0, 16.0, 2.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0, 16.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 16.0, 4.0, 0.0, 0.0], [0.0, 0.0, 10.0, 14.0, 8.0, 1.0, 0.0, 0.0, 0.0, 2.0, 16.0, 14.0, 6.0, 1.0, 0.0, 0.0, 0.0, 0.0, 15.0, 15.0, 8.0, 15.0, 0.0, 0.0, 0.0, 0.0, 5.0, 16.0, 16.0, 10.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 15.0, 12.0, 0.0, 0.0, 0.0, 4.0, 16.0, 6.0, 4.0, 16.0, 6.0, 0.0, 0.0, 8.0, 16.0, 10.0, 8.0, 16.0, 8.0, 0.0, 0.0, 1.0, 8.0, 12.0, 14.0, 12.0, 1.0, 0.0]]"}
input_list = [input_data for _ in range(30)]
print("single input")
print(client.docker_infer(image_id="claytondavisms/sklearn-digits-docker-test:0.0.7", input_data=input_data, container_url="localhost", host_port=host_port, clean_up=False, pull_container=True))

print("multi inputs")
results = client.run_inference(input_list, container_url="localhost", host_port=host_port)
results = client.docker_infer(image_id="claytondavisms/sklearn-digits-docker-test:0.0.7", input_data=input_list, container_url="localhost", host_port=host_port)
for x in results:
    print(x)
Source code in chassisml_sdk/chassisml/chassisml.py
def docker_infer(self,image_id,input_data,container_url="localhost",host_port=5001,container_port=None,timeout=20,clean_up=True,pull_container=False):
    '''
    Runs inference on an OMI compliant container. This method checks to see if a container is running and if not starts it. The method then runs inference against the input_data with the model in the container, and optionally shuts down the container.

    Args:
        image_id (string): the name of an OMI container image usually of the form <docker_uname>/<container_name>:<tag_id>
        input_data (json): dictionary of the form {"input": <binary respresentaion of your data>}
        container_url (str): URL where container is running
        host_port (int): host port that forwards to container's grpc server port
        container_port (str): container port the grpc server listens to
        timeout (int): number of seconds to wait for gRPC server to spin up
        clean_up (bool): whether or not to stop and remove the container after inference
        pull_container (bool): if True pulls missing container from repo

    Returns:
        return_value (str):    Success -> model output as defined in the process function
                                Failure -> Error message if any success criteria is missing.
    Example:
    ```python
    host_port = 5002
    client = chassisml.ChassisClient()


    input_data = {"input": b"[[0.0, 0.0, 0.0, 1.0, 12.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.0, 15.0, 2.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 6.0, 1.0, 2.0, 0.0, 0.0, 4.0, 16.0, 9.0, 1.0, 15.0, 9.0, 0.0, 0.0, 13.0, 15.0, 6.0, 10.0, 16.0, 6.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 16.0, 1.0, 0.0, 0.0, 1.0, 7.0, 4.0, 14.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 9.0, 0.0, 0.0], [0.0, 0.0, 8.0, 16.0, 3.0, 0.0, 1.0, 0.0, 0.0, 0.0, 16.0, 14.0, 5.0, 14.0, 12.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 3.0, 16.0, 14.0, 1.0, 0.0, 0.0, 0.0, 0.0, 12.0, 16.0, 16.0, 2.0, 0.0, 0.0, 0.0, 0.0, 16.0, 11.0, 16.0, 4.0, 0.0, 0.0, 0.0, 3.0, 16.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 10.0, 1.0, 0.0, 0.0], [0.0, 0.0, 5.0, 12.0, 8.0, 0.0, 1.0, 0.0, 0.0, 0.0, 11.0, 16.0, 5.0, 13.0, 6.0, 0.0, 0.0, 0.0, 2.0, 15.0, 16.0, 12.0, 1.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 15.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 11.0, 0.0, 0.0, 0.0, 0.0, 11.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 6.0, 12.0, 12.0, 3.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 15.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 16.0, 12.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 3.0, 4.0, 3.0, 0.0, 0.0, 7.0, 16.0, 5.0, 3.0, 15.0, 8.0, 0.0, 0.0, 13.0, 16.0, 13.0, 15.0, 16.0, 2.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0, 16.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 16.0, 4.0, 0.0, 0.0], [0.0, 0.0, 10.0, 14.0, 8.0, 1.0, 0.0, 0.0, 0.0, 2.0, 16.0, 14.0, 6.0, 1.0, 0.0, 0.0, 0.0, 0.0, 15.0, 15.0, 8.0, 15.0, 0.0, 0.0, 0.0, 0.0, 5.0, 16.0, 16.0, 10.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 15.0, 12.0, 0.0, 0.0, 0.0, 4.0, 16.0, 6.0, 4.0, 16.0, 6.0, 0.0, 0.0, 8.0, 16.0, 10.0, 8.0, 16.0, 8.0, 0.0, 0.0, 1.0, 8.0, 12.0, 14.0, 12.0, 1.0, 0.0]]"}
    input_list = [input_data for _ in range(30)]
    print("single input")
    print(client.docker_infer(image_id="claytondavisms/sklearn-digits-docker-test:0.0.7", input_data=input_data, container_url="localhost", host_port=host_port, clean_up=False, pull_container=True))

    print("multi inputs")
    results = client.run_inference(input_list, container_url="localhost", host_port=host_port)
    results = client.docker_infer(image_id="claytondavisms/sklearn-digits-docker-test:0.0.7", input_data=input_list, container_url="localhost", host_port=host_port)
    for x in results:
        print(x)
    ```
    '''
    try:
        container_id = docker_start(image_id, host_port=host_port, container_port=container_port, timeout=timeout, pull_container=pull_container)
        if "Error" in container_id:
            raise ValueError("container_id wrong")
        return_value = self.run_inference(input_data, container_url=container_url,  host_port=host_port)
        if clean_up:
            docker_clean_up(container_id)
    except Exception as e:
        return_value = {"results": ["Error " + str(e)]}

    return return_value

download_tar(self, job_id, output_filename)

Downloads container image as tar archive

NOTE: This method is not available in the publicly-hosted service.

Parameters:

Name Type Description Default
job_id str

Chassis job identifier generated from ChassisModel.publish method

required
output_filename str

Local output filepath to save container image

required

Returns:

Type Description
None

This method does not return an object

Examples:

# Publish model to Docker registry
response = chassis_model.publish(
    model_name="Chassisml Regression Model",
    model_version="0.0.1",
    registry_user=dockerhub_user,
    registry_pass=dockerhub_pass,
) 

job_id = response.get('job_id)
chassis_client.download_tar(job_id, "./chassis-model.tar")
Source code in chassisml_sdk/chassisml/chassisml.py
def download_tar(self, job_id, output_filename):
    '''
    Downloads container image as tar archive

    **NOTE**: This method is not available in the publicly-hosted service.

    Args:
        job_id (str): Chassis job identifier generated from `ChassisModel.publish` method
        output_filename (str): Local output filepath to save container image

    Returns:
        None: This method does not return an object

    Examples:
    ```python
    # Publish model to Docker registry
    response = chassis_model.publish(
        model_name="Chassisml Regression Model",
        model_version="0.0.1",
        registry_user=dockerhub_user,
        registry_pass=dockerhub_pass,
    ) 

    job_id = response.get('job_id)
    chassis_client.download_tar(job_id, "./chassis-model.tar")
    ```
    '''
    url = f'{urllib.parse.urljoin(self.base_url, routes["job"])}/{job_id}/download-tar'

    if self.auth_header:
        r = requests.get(url,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
    else:
        r = requests.get(url,verify=self.ssl_verification)


    if r.status_code == 200:
        with open(output_filename, 'wb') as f:
            f.write(r.content)
    else:
        print(f'Error download tar: {r.text}')

get_job_logs(self, job_id)

Checks the status of a chassis job

Parameters:

Name Type Description Default
job_id str

Chassis job identifier generated from ChassisModel.publish method

required

Returns:

Type Description
Dict

JSON Chassis job status

Examples:

# Create Chassisml model
chassis_model = chassis_client.create_model(process_fn=process)
# Define Dockerhub credentials
dockerhub_user = "user"
dockerhub_pass = "password"
# Publish model to Docker registry
response = chassis_model.publish(
    model_name="Chassisml Regression Model",
    model_version="0.0.1",
    registry_user=dockerhub_user,
    registry_pass=dockerhub_pass,
) 
job_id = response.get('job_id')
job_status = chassis_client.get_job_logs(job_id)
Source code in chassisml_sdk/chassisml/chassisml.py
def get_job_logs(self, job_id):
    '''
    Checks the status of a chassis job
    Args:
        job_id (str): Chassis job identifier generated from `ChassisModel.publish` method

    Returns:
        Dict: JSON Chassis job status
    Examples:
    ```python
    # Create Chassisml model
    chassis_model = chassis_client.create_model(process_fn=process)
    # Define Dockerhub credentials
    dockerhub_user = "user"
    dockerhub_pass = "password"
    # Publish model to Docker registry
    response = chassis_model.publish(
        model_name="Chassisml Regression Model",
        model_version="0.0.1",
        registry_user=dockerhub_user,
        registry_pass=dockerhub_pass,
    ) 
    job_id = response.get('job_id')
    job_status = chassis_client.get_job_logs(job_id)
    ```
    '''
    route = f'{urllib.parse.urljoin(self.base_url, routes["job"])}/{job_id}/logs'
    if self.auth_header:
        res = requests.get(route,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
    else:
        res = requests.get(route,verify=self.ssl_verification)
    res.raise_for_status()
    return res.text

get_job_status(self, job_id)

Checks the status of a chassis job

Parameters:

Name Type Description Default
job_id str

Chassis job identifier generated from ChassisModel.publish method

required

Returns:

Type Description
Dict

JSON Chassis job status

Examples:

# Create Chassisml model
chassis_model = chassis_client.create_model(process_fn=process)

# Define Dockerhub credentials
dockerhub_user = "user"
dockerhub_pass = "password"

# Publish model to Docker registry
response = chassis_model.publish(
    model_name="Chassisml Regression Model",
    model_version="0.0.1",
    registry_user=dockerhub_user,
    registry_pass=dockerhub_pass,
) 

job_id = response.get('job_id')
job_status = chassis_client.get_job_status(job_id)
Source code in chassisml_sdk/chassisml/chassisml.py
def get_job_status(self, job_id):
    '''
    Checks the status of a chassis job

    Args:
        job_id (str): Chassis job identifier generated from `ChassisModel.publish` method

    Returns:
        Dict: JSON Chassis job status

    Examples:
    ```python
    # Create Chassisml model
    chassis_model = chassis_client.create_model(process_fn=process)

    # Define Dockerhub credentials
    dockerhub_user = "user"
    dockerhub_pass = "password"

    # Publish model to Docker registry
    response = chassis_model.publish(
        model_name="Chassisml Regression Model",
        model_version="0.0.1",
        registry_user=dockerhub_user,
        registry_pass=dockerhub_pass,
    ) 

    job_id = response.get('job_id')
    job_status = chassis_client.get_job_status(job_id)
    ```

    '''
    route = f'{urllib.parse.urljoin(self.base_url, routes["job"])}/{job_id}'
    if self.auth_header:
        res = requests.get(route,headers={'Authorization': self.auth_header},verify=self.ssl_verification)
    else:
        res = requests.get(route,verify=self.ssl_verification)

    data = res.json()
    return data

run_inference(self, input_data, container_url='localhost', host_port=45000)

This is the method you use to submit data to a container chassis has built for inference. It assumes the container has been downloaded from dockerhub and is running somewhere you have access to.

Parameters:

Name Type Description Default
input_data json

dictionary of the form {"input": }

required
container_url str

URL where container is running

'localhost'
host_port int

host port that forwards to container's grpc server port

45000

Returns:

Type Description
return_value (str)

Success -> results from model processing as specified in the process function. Failure -> Error codes from processing errors. All errors should container the word "Error."

Examples:

# assume that the container is running locally, and that it was started with this docker command
#  docker run -it -p 5001:45000 <docker_uname>/<container_name>:<tag_id>

from chassisml_sdk.chassisml import chassisml

client = chassisml.ChassisClient("https://chassis.app.modzy.com/")

input_data = {"input": b"[[0.0, 0.0, 0.0, 1.0, 12.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.0, 15.0, 2.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 6.0, 1.0, 2.0, 0.0, 0.0, 4.0, 16.0, 9.0, 1.0, 15.0, 9.0, 0.0, 0.0, 13.0, 15.0, 6.0, 10.0, 16.0, 6.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 16.0, 1.0, 0.0, 0.0, 1.0, 7.0, 4.0, 14.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 9.0, 0.0, 0.0], [0.0, 0.0, 8.0, 16.0, 3.0, 0.0, 1.0, 0.0, 0.0, 0.0, 16.0, 14.0, 5.0, 14.0, 12.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 3.0, 16.0, 14.0, 1.0, 0.0, 0.0, 0.0, 0.0, 12.0, 16.0, 16.0, 2.0, 0.0, 0.0, 0.0, 0.0, 16.0, 11.0, 16.0, 4.0, 0.0, 0.0, 0.0, 3.0, 16.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 10.0, 1.0, 0.0, 0.0], [0.0, 0.0, 5.0, 12.0, 8.0, 0.0, 1.0, 0.0, 0.0, 0.0, 11.0, 16.0, 5.0, 13.0, 6.0, 0.0, 0.0, 0.0, 2.0, 15.0, 16.0, 12.0, 1.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 15.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 11.0, 0.0, 0.0, 0.0, 0.0, 11.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 6.0, 12.0, 12.0, 3.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 15.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 16.0, 12.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 3.0, 4.0, 3.0, 0.0, 0.0, 7.0, 16.0, 5.0, 3.0, 15.0, 8.0, 0.0, 0.0, 13.0, 16.0, 13.0, 15.0, 16.0, 2.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0, 16.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 16.0, 4.0, 0.0, 0.0], [0.0, 0.0, 10.0, 14.0, 8.0, 1.0, 0.0, 0.0, 0.0, 2.0, 16.0, 14.0, 6.0, 1.0, 0.0, 0.0, 0.0, 0.0, 15.0, 15.0, 8.0, 15.0, 0.0, 0.0, 0.0, 0.0, 5.0, 16.0, 16.0, 10.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 15.0, 12.0, 0.0, 0.0, 0.0, 4.0, 16.0, 6.0, 4.0, 16.0, 6.0, 0.0, 0.0, 8.0, 16.0, 10.0, 8.0, 16.0, 8.0, 0.0, 0.0, 1.0, 8.0, 12.0, 14.0, 12.0, 1.0, 0.0]]"}
input_list = [input_data for _ in range(30)]

print("single input")
print(client.run_inference(input_data, container_url="localhost", host_port=5001))
print("multi inputs")
results = client.run_inference(input_list, container_url="localhost", host_port=5001)
for x in results:
    print(x)
Source code in chassisml_sdk/chassisml/chassisml.py
def run_inference(self,input_data,container_url="localhost",host_port=45000):
    '''
    This is the method you use to submit data to a container chassis has built for inference. It assumes the container has been downloaded from dockerhub and is running somewhere you have access to.

    Args:
        input_data (json): dictionary of the form {"input": <binary respresentaion of your data>}
        container_url (str): URL where container is running
        host_port (int): host port that forwards to container's grpc server port

    Returns:
        return_value (str): Success -> results from model processing as specified in the process function.
                            Failure -> Error codes from processing errors. All errors should container the word "Error."

    Examples:
    ```python
    # assume that the container is running locally, and that it was started with this docker command
    #  docker run -it -p 5001:45000 <docker_uname>/<container_name>:<tag_id>

    from chassisml_sdk.chassisml import chassisml

    client = chassisml.ChassisClient("https://chassis.app.modzy.com/")

    input_data = {"input": b"[[0.0, 0.0, 0.0, 1.0, 12.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.0, 15.0, 2.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 6.0, 1.0, 2.0, 0.0, 0.0, 4.0, 16.0, 9.0, 1.0, 15.0, 9.0, 0.0, 0.0, 13.0, 15.0, 6.0, 10.0, 16.0, 6.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 16.0, 1.0, 0.0, 0.0, 1.0, 7.0, 4.0, 14.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 9.0, 0.0, 0.0], [0.0, 0.0, 8.0, 16.0, 3.0, 0.0, 1.0, 0.0, 0.0, 0.0, 16.0, 14.0, 5.0, 14.0, 12.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 3.0, 16.0, 14.0, 1.0, 0.0, 0.0, 0.0, 0.0, 12.0, 16.0, 16.0, 2.0, 0.0, 0.0, 0.0, 0.0, 16.0, 11.0, 16.0, 4.0, 0.0, 0.0, 0.0, 3.0, 16.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 10.0, 1.0, 0.0, 0.0], [0.0, 0.0, 5.0, 12.0, 8.0, 0.0, 1.0, 0.0, 0.0, 0.0, 11.0, 16.0, 5.0, 13.0, 6.0, 0.0, 0.0, 0.0, 2.0, 15.0, 16.0, 12.0, 1.0, 0.0, 0.0, 0.0, 0.0, 10.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 15.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 8.0, 16.0, 16.0, 11.0, 0.0, 0.0, 0.0, 0.0, 11.0, 16.0, 16.0, 9.0, 0.0, 0.0, 0.0, 0.0, 6.0, 12.0, 12.0, 3.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 15.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 16.0, 12.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 3.0, 4.0, 3.0, 0.0, 0.0, 7.0, 16.0, 5.0, 3.0, 15.0, 8.0, 0.0, 0.0, 13.0, 16.0, 13.0, 15.0, 16.0, 2.0, 0.0, 0.0, 12.0, 16.0, 16.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0, 16.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 16.0, 4.0, 0.0, 0.0], [0.0, 0.0, 10.0, 14.0, 8.0, 1.0, 0.0, 0.0, 0.0, 2.0, 16.0, 14.0, 6.0, 1.0, 0.0, 0.0, 0.0, 0.0, 15.0, 15.0, 8.0, 15.0, 0.0, 0.0, 0.0, 0.0, 5.0, 16.0, 16.0, 10.0, 0.0, 0.0, 0.0, 0.0, 12.0, 15.0, 15.0, 12.0, 0.0, 0.0, 0.0, 4.0, 16.0, 6.0, 4.0, 16.0, 6.0, 0.0, 0.0, 8.0, 16.0, 10.0, 8.0, 16.0, 8.0, 0.0, 0.0, 1.0, 8.0, 12.0, 14.0, 12.0, 1.0, 0.0]]"}
    input_list = [input_data for _ in range(30)]

    print("single input")
    print(client.run_inference(input_data, container_url="localhost", host_port=5001))
    print("multi inputs")
    results = client.run_inference(input_list, container_url="localhost", host_port=5001)
    for x in results:
        print(x)
    ```
    '''
    model_client.override_server_URL(container_url, host_port)
    return model_client.run(input_data)

ChassisModel (PythonModel)

The Chassis Model object.

This class inherits from mlflow.pyfunc.PythonModel and adds Chassis functionality.

Attributes:

Name Type Description
predict function

MLflow pyfunc compatible predict function. Will wrap user-provided function which takes two arguments: model_input (bytes) and model_context (dict).

chassis_build_url str

The build url for the Chassis API.

ssl_verification Union[str, bool]

Can be path to certificate to use during requests to service, True (use verification), or False (don't use verification).

Source code in chassisml_sdk/chassisml/chassisml.py
class ChassisModel(mlflow.pyfunc.PythonModel):
    """The Chassis Model object.

    This class inherits from `mlflow.pyfunc.PythonModel` and adds Chassis functionality.

    Attributes:
        predict (function): MLflow pyfunc compatible predict function. 
            Will wrap user-provided function which takes two arguments: model_input (bytes) and model_context (dict).
        chassis_build_url (str): The build url for the Chassis API.
        ssl_verification (Union[str, bool]): Can be path to certificate to use during requests to service, True (use verification), or False (don't use verification).
    """

    def __init__(self,process_fn,batch_process_fn,batch_size,chassis_base_url,chassis_auth_header,ssl_verification):      

        if process_fn and batch_process_fn:
            if not batch_size:
                raise ValueError("Both batch_process_fn and batch_size must be provided for batch support.")
            self.predict = self._gen_predict_method(process_fn)
            self.batch_predict = self._gen_predict_method(batch_process_fn,batch=True)
            self.batch_input = True
            self.batch_size = batch_size
        elif process_fn and not batch_process_fn:
            self.predict = self._gen_predict_method(process_fn)
            self.batch_input = False
            self.batch_size = None
        elif batch_process_fn and not process_fn:
            if not batch_size:
                raise ValueError("Both batch_process_fn and batch_size must be provided for batch support.")
            self.predict = self._gen_predict_method(batch_process_fn,batch_to_single=True)
            self.batch_predict = self._gen_predict_method(batch_process_fn,batch=True)
            self.batch_input = True
            self.batch_size = batch_size
        else:
            raise ValueError("At least one of process_fn or batch_process_fn must be provided.")

        self.chassis_build_url = urllib.parse.urljoin(chassis_base_url, routes['build'])
        self.chassis_test_url = urllib.parse.urljoin(chassis_base_url, routes['test'])
        self.chassis_auth_header = chassis_auth_header
        self.ssl_verification = ssl_verification

    def _gen_predict_method(self,process_fn,batch=False,batch_to_single=False):
        def predict(_,model_input):
            if batch_to_single:
                output = process_fn([model_input])[0]
            else:
                output = process_fn(model_input)
            if batch:
                return [json.dumps(out,separators=(",", ":"),cls=NumpyEncoder).encode() for out in output]
            else:
                return json.dumps(output,separators=(",", ":"),cls=NumpyEncoder).encode()
        return predict

    def test(self,test_input):
        '''
        Runs a sample inference test on a single input on chassis model locally

        Args:
            test_input (Union[str, bytes, BufferedReader]): Single sample input data to test model

        Returns:
            bytes: raw model predictions returned by `process_fn` method

        Examples:
        ```python
        chassis_model = chassis_client.create_model(process_fn=process)
        sample_filepath = './sample_data.json'
        results = chassis_model.test(sample_filepath)
        ```
        '''
        if isinstance(test_input,_io.BufferedReader):
            result = self.predict(None,test_input.read())
        elif isinstance(test_input,bytes):
            result = self.predict(None,test_input)
        elif isinstance(test_input,str):
            if os.path.exists(test_input):
                result = self.predict(None,open(test_input,'rb').read())
            else:
                result = self.predict(None,bytes(test_input,encoding='utf8'))
        else:
            print("Invalid input. Must be buffered reader, bytes, valid filepath, or text input.")
            return False
        return result

    def test_batch(self,test_input):
        '''
        Takes a single input file, creates a batch of size `batch_size` defined in `ChassisModel.create_model`, and runs a batch job against chassis model locally if `batch_process_fn` is defined.

        Args:
            test_input (Union[str, bytes, BufferedReader]): Batch of sample input data to test model

        Returns:
            bytes: raw model predictions returned by `batch_process_fn` method

        Examples:
        ```python
        chassis_model = chassis_client.create_model(process_fn=process)
        sample_input = sample_filepath = './sample_data.json'
        results = chassis_model.test_batch(sample_filepath)
        ```        

        '''
        if not self.batch_input:
            raise NotImplementedError("Batch inference not implemented.")

        if hasattr(self,'batch_predict'):
            batch_method = self.batch_predict
        else:
            batch_method = self.predict

        if isinstance(test_input,_io.BufferedReader):
            results = batch_method(None,[test_input.read() for _ in range(self.batch_size)])
        elif isinstance(test_input,bytes):
            results = batch_method(None,[test_input for _ in range(self.batch_size)])
        elif isinstance(test_input,str):
            if os.path.exists(test_input):
                results = batch_method(None,[open(test_input,'rb').read() for _ in range(self.batch_size)])
            else:
                results = batch_method(None,[bytes(test_input,encoding='utf8') for _ in range(self.batch_size)])
        else:
            print("Invalid input. Must be buffered reader, bytes, valid filepath, or text input.")
            return False
        return results

    def test_env(self,test_input_path,conda_env=None,fix_env=True):
        '''
        Runs a sample inference test in new conda environment created on the chassis service side. In other words, a "dry run" of a true chassis job to ensure model code runs within the chassis service.

        **NOTE**: This method is not available in the publicly-hosted service.

        Args:
            test_input_path (str): Filepath to sample input data
            conda_env (str): Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment
            fix_env (bool): Modifies conda or pip-installable packages into list of dependencies to be installed during the container build

        Returns:
            Dict: raw model predictions returned by `process_fn` or `batch_process_fn` run from within chassis service

        Examples:
        ```python
        chassis_model = chassis_client.create_model(process_fn=process)
        sample_filepath = './sample_data.json'
        results = chassis_model.test_env(sample_filepath)
        ```        

        '''
        model_directory = os.path.join(tempfile.mkdtemp(),CHASSIS_TMP_DIRNAME)
        mlflow.pyfunc.save_model(path=model_directory, python_model=self, conda_env=conda_env, 
                                extra_pip_requirements = None if conda_env else ["chassisml=={}".format(__version__)])

        if fix_env:
            fix_dependencies(model_directory)

        # Compress all files in model directory to send them as a zip.
        tmppath = tempfile.mkdtemp()
        zipdir(model_directory,tmppath,MODEL_ZIP_NAME)

        with open('{}/{}'.format(tmppath,MODEL_ZIP_NAME),'rb') as model_f, \
                open(test_input_path,'rb') as test_input_f:
            files = [
                ('sample_input', test_input_f),
                ('model', model_f)
            ]

            print('Starting test job... ', end='', flush=True)
            if self.chassis_auth_header:
                res = requests.post(self.chassis_test_url, files=files, headers={'Authorization': self.chassis_auth_header}, verify=self.ssl_verification)
            else:
                res = requests.post(self.chassis_test_url, files=files, verify=self.ssl_verification)
            res.raise_for_status()
        print('Ok!')

        shutil.rmtree(tmppath)
        shutil.rmtree(model_directory)

        return res.json()

    def save(self,path,conda_env=None,overwrite=False,fix_env=True,gpu=False,arm64=False):
        '''
        Saves a copy of ChassisModel to local filepath

        Args:
            path (str): Filepath to save chassis model as local MLflow model
            conda_env (Union[str, dict]): Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment
            overwrite (bool): If True, overwrites existing contents of `path` parameter
            gpu (bool): If True and `arm64` is True, modifies dependencies as needed by chassis for ARM64+GPU support
            arm64 (bool): If True and `gpu` is True, modifies dependencies as needed by chassis for ARM64+GPU support

        Returns:
            None: This method does not return an object

        Examples:
        ```python
        chassis_model = chassis_client.create_model(process_fn=process)
        chassis_model.save("local_model_directory")
        ```
        '''
        if overwrite and os.path.exists(path):
            shutil.rmtree(path)
        mlflow.pyfunc.save_model(path=path, python_model=self, conda_env=conda_env)
        if fix_env:
            fix_dependencies(path)
        if arm64 and gpu:
            fix_dependencies_arm_gpu(path)

        print("Chassis model saved.")

    def publish(self,model_name,model_version,registry_user=None,registry_pass=None,
                conda_env=None,fix_env=True,gpu=False,arm64=False,
                sample_input_path=None,webhook=None):
        '''
        Executes chassis job, which containerizes model and pushes container image to Docker registry.

        Args:
            model_name (str): Model name that serves as model's name and docker registry repository name. **Note**: this string cannot include punctuation
            model_version (str): Version of model
            registry_user (str): Docker registry username
            registry_pass (str): Docker registry password
            conda_env (Union[str, dict]): Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment
            fix_env (bool): Modifies conda or pip-installable packages into list of dependencies to be installed during the container build
            gpu (bool): If True, builds container image that runs on GPU hardware
            arm64 (bool): If True, builds container image that runs on ARM64 architecture
            sample_input_path (str): Optional filepath to sample input data
            webhook (str): Optional webhook for Chassis service to update status

        Returns:
            Dict: Response to Chassis `/build` endpoint

        Examples:
        ```python
        # Create Chassisml model
        chassis_model = chassis_client.create_model(process_fn=process)

        # Define Dockerhub credentials
        dockerhub_user = "user"
        dockerhub_pass = "password"

        # Publish model to Docker registry
        response = chassis_model.publish(
            model_name="Chassisml Regression Model",
            model_version="0.0.1",
            registry_user=dockerhub_user,
            registry_pass=dockerhub_pass,
        )        
        ```            

        '''

        if webhook and not validators.url(webhook):
            raise ValueError("Provided webhook is not a valid URL")

        try:
            model_directory = os.path.join(tempfile.mkdtemp(),CHASSIS_TMP_DIRNAME)
            mlflow.pyfunc.save_model(path=model_directory, python_model=self, conda_env=conda_env, 
                                    extra_pip_requirements = None if conda_env else ["chassisml=={}".format(__version__)])

            if fix_env:
                fix_dependencies(model_directory)

            if arm64:
                warnings.warn("ARM64 support is experimental, KServe currently not supported and builds may take a while or fail depending on your required dependencies")
                if gpu:
                    warnings.warn("ARM64+GPU support tested on Nvidia Jetson Nano")
                    fix_dependencies_arm_gpu(model_directory)

            # Compress all files in model directory to send them as a zip.
            tmppath = tempfile.mkdtemp()
            zipdir(model_directory,tmppath,MODEL_ZIP_NAME)

            image_name = "-".join(model_name.translate(str.maketrans('', '', string.punctuation)).lower().split())
            image_data = {
                'name': f"{registry_user+'/' if (registry_user and registry_pass) else ''}{image_name}:{model_version}",
                'model_name': model_name,
                'model_path': tmppath,
                'publish': True,
                'gpu': gpu,
                'arm64': arm64,
                'webhook': webhook
            }

            if registry_user and registry_pass:
                image_data['registry_auth'] = base64.b64encode("{}:{}".format(registry_user,registry_pass).encode("utf-8")).decode("utf-8")

            metadata_path = os.path.join(tmppath,YAML_NAME)
            write_metadata_yaml(model_name,model_version,metadata_path,batch_size=self.batch_size,gpu=gpu)

            with open('{}/{}'.format(tmppath,MODEL_ZIP_NAME),'rb') as f:
                files = [
                    ('image_data', json.dumps(image_data)),
                    ('model', f)
                ]

                file_pointers = []

                meta_fp = open(metadata_path, 'rb')
                files.append(('metadata_data', meta_fp))
                file_pointers.append(meta_fp)

                if sample_input_path:
                    sample_fp = open(sample_input_path, 'rb')
                    files.append(('sample_input', sample_fp))
                    file_pointers.append(sample_fp)

                print('Starting build job... ', end='', flush=True)
                if self.chassis_auth_header:
                    res = requests.post(self.chassis_build_url, files=files, headers={'Authorization': self.chassis_auth_header}, verify=self.ssl_verification)
                else:
                    res = requests.post(self.chassis_build_url, files=files, verify=self.ssl_verification)

                res.raise_for_status()
            print('Ok!')

            for fp in file_pointers:
                fp.close()

            shutil.rmtree(tmppath)
            shutil.rmtree(model_directory)

            return res.json()

        except Exception as e:
            if os.path.exists(tmppath):
                shutil.rmtree(tmppath)
            if os.path.exists(model_directory):
                shutil.rmtree(model_directory)
            raise(e)

publish(self, model_name, model_version, registry_user=None, registry_pass=None, conda_env=None, fix_env=True, gpu=False, arm64=False, sample_input_path=None, webhook=None)

Executes chassis job, which containerizes model and pushes container image to Docker registry.

Parameters:

Name Type Description Default
model_name str

Model name that serves as model's name and docker registry repository name. Note: this string cannot include punctuation

required
model_version str

Version of model

required
registry_user str

Docker registry username

None
registry_pass str

Docker registry password

None
conda_env Union[str, dict]

Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment

None
fix_env bool

Modifies conda or pip-installable packages into list of dependencies to be installed during the container build

True
gpu bool

If True, builds container image that runs on GPU hardware

False
arm64 bool

If True, builds container image that runs on ARM64 architecture

False
sample_input_path str

Optional filepath to sample input data

None
webhook str

Optional webhook for Chassis service to update status

None

Returns:

Type Description
Dict

Response to Chassis /build endpoint

Examples:

# Create Chassisml model
chassis_model = chassis_client.create_model(process_fn=process)

# Define Dockerhub credentials
dockerhub_user = "user"
dockerhub_pass = "password"

# Publish model to Docker registry
response = chassis_model.publish(
    model_name="Chassisml Regression Model",
    model_version="0.0.1",
    registry_user=dockerhub_user,
    registry_pass=dockerhub_pass,
)        
Source code in chassisml_sdk/chassisml/chassisml.py
def publish(self,model_name,model_version,registry_user=None,registry_pass=None,
            conda_env=None,fix_env=True,gpu=False,arm64=False,
            sample_input_path=None,webhook=None):
    '''
    Executes chassis job, which containerizes model and pushes container image to Docker registry.

    Args:
        model_name (str): Model name that serves as model's name and docker registry repository name. **Note**: this string cannot include punctuation
        model_version (str): Version of model
        registry_user (str): Docker registry username
        registry_pass (str): Docker registry password
        conda_env (Union[str, dict]): Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment
        fix_env (bool): Modifies conda or pip-installable packages into list of dependencies to be installed during the container build
        gpu (bool): If True, builds container image that runs on GPU hardware
        arm64 (bool): If True, builds container image that runs on ARM64 architecture
        sample_input_path (str): Optional filepath to sample input data
        webhook (str): Optional webhook for Chassis service to update status

    Returns:
        Dict: Response to Chassis `/build` endpoint

    Examples:
    ```python
    # Create Chassisml model
    chassis_model = chassis_client.create_model(process_fn=process)

    # Define Dockerhub credentials
    dockerhub_user = "user"
    dockerhub_pass = "password"

    # Publish model to Docker registry
    response = chassis_model.publish(
        model_name="Chassisml Regression Model",
        model_version="0.0.1",
        registry_user=dockerhub_user,
        registry_pass=dockerhub_pass,
    )        
    ```            

    '''

    if webhook and not validators.url(webhook):
        raise ValueError("Provided webhook is not a valid URL")

    try:
        model_directory = os.path.join(tempfile.mkdtemp(),CHASSIS_TMP_DIRNAME)
        mlflow.pyfunc.save_model(path=model_directory, python_model=self, conda_env=conda_env, 
                                extra_pip_requirements = None if conda_env else ["chassisml=={}".format(__version__)])

        if fix_env:
            fix_dependencies(model_directory)

        if arm64:
            warnings.warn("ARM64 support is experimental, KServe currently not supported and builds may take a while or fail depending on your required dependencies")
            if gpu:
                warnings.warn("ARM64+GPU support tested on Nvidia Jetson Nano")
                fix_dependencies_arm_gpu(model_directory)

        # Compress all files in model directory to send them as a zip.
        tmppath = tempfile.mkdtemp()
        zipdir(model_directory,tmppath,MODEL_ZIP_NAME)

        image_name = "-".join(model_name.translate(str.maketrans('', '', string.punctuation)).lower().split())
        image_data = {
            'name': f"{registry_user+'/' if (registry_user and registry_pass) else ''}{image_name}:{model_version}",
            'model_name': model_name,
            'model_path': tmppath,
            'publish': True,
            'gpu': gpu,
            'arm64': arm64,
            'webhook': webhook
        }

        if registry_user and registry_pass:
            image_data['registry_auth'] = base64.b64encode("{}:{}".format(registry_user,registry_pass).encode("utf-8")).decode("utf-8")

        metadata_path = os.path.join(tmppath,YAML_NAME)
        write_metadata_yaml(model_name,model_version,metadata_path,batch_size=self.batch_size,gpu=gpu)

        with open('{}/{}'.format(tmppath,MODEL_ZIP_NAME),'rb') as f:
            files = [
                ('image_data', json.dumps(image_data)),
                ('model', f)
            ]

            file_pointers = []

            meta_fp = open(metadata_path, 'rb')
            files.append(('metadata_data', meta_fp))
            file_pointers.append(meta_fp)

            if sample_input_path:
                sample_fp = open(sample_input_path, 'rb')
                files.append(('sample_input', sample_fp))
                file_pointers.append(sample_fp)

            print('Starting build job... ', end='', flush=True)
            if self.chassis_auth_header:
                res = requests.post(self.chassis_build_url, files=files, headers={'Authorization': self.chassis_auth_header}, verify=self.ssl_verification)
            else:
                res = requests.post(self.chassis_build_url, files=files, verify=self.ssl_verification)

            res.raise_for_status()
        print('Ok!')

        for fp in file_pointers:
            fp.close()

        shutil.rmtree(tmppath)
        shutil.rmtree(model_directory)

        return res.json()

    except Exception as e:
        if os.path.exists(tmppath):
            shutil.rmtree(tmppath)
        if os.path.exists(model_directory):
            shutil.rmtree(model_directory)
        raise(e)

save(self, path, conda_env=None, overwrite=False, fix_env=True, gpu=False, arm64=False)

Saves a copy of ChassisModel to local filepath

Parameters:

Name Type Description Default
path str

Filepath to save chassis model as local MLflow model

required
conda_env Union[str, dict]

Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment

None
overwrite bool

If True, overwrites existing contents of path parameter

False
gpu bool

If True and arm64 is True, modifies dependencies as needed by chassis for ARM64+GPU support

False
arm64 bool

If True and gpu is True, modifies dependencies as needed by chassis for ARM64+GPU support

False

Returns:

Type Description
None

This method does not return an object

Examples:

chassis_model = chassis_client.create_model(process_fn=process)
chassis_model.save("local_model_directory")
Source code in chassisml_sdk/chassisml/chassisml.py
def save(self,path,conda_env=None,overwrite=False,fix_env=True,gpu=False,arm64=False):
    '''
    Saves a copy of ChassisModel to local filepath

    Args:
        path (str): Filepath to save chassis model as local MLflow model
        conda_env (Union[str, dict]): Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment
        overwrite (bool): If True, overwrites existing contents of `path` parameter
        gpu (bool): If True and `arm64` is True, modifies dependencies as needed by chassis for ARM64+GPU support
        arm64 (bool): If True and `gpu` is True, modifies dependencies as needed by chassis for ARM64+GPU support

    Returns:
        None: This method does not return an object

    Examples:
    ```python
    chassis_model = chassis_client.create_model(process_fn=process)
    chassis_model.save("local_model_directory")
    ```
    '''
    if overwrite and os.path.exists(path):
        shutil.rmtree(path)
    mlflow.pyfunc.save_model(path=path, python_model=self, conda_env=conda_env)
    if fix_env:
        fix_dependencies(path)
    if arm64 and gpu:
        fix_dependencies_arm_gpu(path)

    print("Chassis model saved.")

test(self, test_input)

Runs a sample inference test on a single input on chassis model locally

Parameters:

Name Type Description Default
test_input Union[str, bytes, BufferedReader]

Single sample input data to test model

required

Returns:

Type Description
bytes

raw model predictions returned by process_fn method

Examples:

chassis_model = chassis_client.create_model(process_fn=process)
sample_filepath = './sample_data.json'
results = chassis_model.test(sample_filepath)
Source code in chassisml_sdk/chassisml/chassisml.py
def test(self,test_input):
    '''
    Runs a sample inference test on a single input on chassis model locally

    Args:
        test_input (Union[str, bytes, BufferedReader]): Single sample input data to test model

    Returns:
        bytes: raw model predictions returned by `process_fn` method

    Examples:
    ```python
    chassis_model = chassis_client.create_model(process_fn=process)
    sample_filepath = './sample_data.json'
    results = chassis_model.test(sample_filepath)
    ```
    '''
    if isinstance(test_input,_io.BufferedReader):
        result = self.predict(None,test_input.read())
    elif isinstance(test_input,bytes):
        result = self.predict(None,test_input)
    elif isinstance(test_input,str):
        if os.path.exists(test_input):
            result = self.predict(None,open(test_input,'rb').read())
        else:
            result = self.predict(None,bytes(test_input,encoding='utf8'))
    else:
        print("Invalid input. Must be buffered reader, bytes, valid filepath, or text input.")
        return False
    return result

test_batch(self, test_input)

Takes a single input file, creates a batch of size batch_size defined in ChassisModel.create_model, and runs a batch job against chassis model locally if batch_process_fn is defined.

Parameters:

Name Type Description Default
test_input Union[str, bytes, BufferedReader]

Batch of sample input data to test model

required

Returns:

Type Description
bytes

raw model predictions returned by batch_process_fn method

Examples:

chassis_model = chassis_client.create_model(process_fn=process)
sample_input = sample_filepath = './sample_data.json'
results = chassis_model.test_batch(sample_filepath)
Source code in chassisml_sdk/chassisml/chassisml.py
def test_batch(self,test_input):
    '''
    Takes a single input file, creates a batch of size `batch_size` defined in `ChassisModel.create_model`, and runs a batch job against chassis model locally if `batch_process_fn` is defined.

    Args:
        test_input (Union[str, bytes, BufferedReader]): Batch of sample input data to test model

    Returns:
        bytes: raw model predictions returned by `batch_process_fn` method

    Examples:
    ```python
    chassis_model = chassis_client.create_model(process_fn=process)
    sample_input = sample_filepath = './sample_data.json'
    results = chassis_model.test_batch(sample_filepath)
    ```        

    '''
    if not self.batch_input:
        raise NotImplementedError("Batch inference not implemented.")

    if hasattr(self,'batch_predict'):
        batch_method = self.batch_predict
    else:
        batch_method = self.predict

    if isinstance(test_input,_io.BufferedReader):
        results = batch_method(None,[test_input.read() for _ in range(self.batch_size)])
    elif isinstance(test_input,bytes):
        results = batch_method(None,[test_input for _ in range(self.batch_size)])
    elif isinstance(test_input,str):
        if os.path.exists(test_input):
            results = batch_method(None,[open(test_input,'rb').read() for _ in range(self.batch_size)])
        else:
            results = batch_method(None,[bytes(test_input,encoding='utf8') for _ in range(self.batch_size)])
    else:
        print("Invalid input. Must be buffered reader, bytes, valid filepath, or text input.")
        return False
    return results

test_env(self, test_input_path, conda_env=None, fix_env=True)

Runs a sample inference test in new conda environment created on the chassis service side. In other words, a "dry run" of a true chassis job to ensure model code runs within the chassis service.

NOTE: This method is not available in the publicly-hosted service.

Parameters:

Name Type Description Default
test_input_path str

Filepath to sample input data

required
conda_env str

Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment

None
fix_env bool

Modifies conda or pip-installable packages into list of dependencies to be installed during the container build

True

Returns:

Type Description
Dict

raw model predictions returned by process_fn or batch_process_fn run from within chassis service

Examples:

chassis_model = chassis_client.create_model(process_fn=process)
sample_filepath = './sample_data.json'
results = chassis_model.test_env(sample_filepath)
Source code in chassisml_sdk/chassisml/chassisml.py
def test_env(self,test_input_path,conda_env=None,fix_env=True):
    '''
    Runs a sample inference test in new conda environment created on the chassis service side. In other words, a "dry run" of a true chassis job to ensure model code runs within the chassis service.

    **NOTE**: This method is not available in the publicly-hosted service.

    Args:
        test_input_path (str): Filepath to sample input data
        conda_env (str): Either filepath to conda.yaml file or dictionary with environment requirements. If not provided, chassis will infer dependency requirements from local environment
        fix_env (bool): Modifies conda or pip-installable packages into list of dependencies to be installed during the container build

    Returns:
        Dict: raw model predictions returned by `process_fn` or `batch_process_fn` run from within chassis service

    Examples:
    ```python
    chassis_model = chassis_client.create_model(process_fn=process)
    sample_filepath = './sample_data.json'
    results = chassis_model.test_env(sample_filepath)
    ```        

    '''
    model_directory = os.path.join(tempfile.mkdtemp(),CHASSIS_TMP_DIRNAME)
    mlflow.pyfunc.save_model(path=model_directory, python_model=self, conda_env=conda_env, 
                            extra_pip_requirements = None if conda_env else ["chassisml=={}".format(__version__)])

    if fix_env:
        fix_dependencies(model_directory)

    # Compress all files in model directory to send them as a zip.
    tmppath = tempfile.mkdtemp()
    zipdir(model_directory,tmppath,MODEL_ZIP_NAME)

    with open('{}/{}'.format(tmppath,MODEL_ZIP_NAME),'rb') as model_f, \
            open(test_input_path,'rb') as test_input_f:
        files = [
            ('sample_input', test_input_f),
            ('model', model_f)
        ]

        print('Starting test job... ', end='', flush=True)
        if self.chassis_auth_header:
            res = requests.post(self.chassis_test_url, files=files, headers={'Authorization': self.chassis_auth_header}, verify=self.ssl_verification)
        else:
            res = requests.post(self.chassis_test_url, files=files, verify=self.ssl_verification)
        res.raise_for_status()
    print('Ok!')

    shutil.rmtree(tmppath)
    shutil.rmtree(model_directory)

    return res.json()